A Genetic Algorithm Approach for Reliability of Bridge Network in Fuzzy System
نویسندگان
چکیده
This paper presents a Genetic Algorithm (GA) approach for solving constrained reliability optimization problem of the five unit bridge network. Considering uncertainty for cost, the reliability optimization problem has been solved by GA technique to maximize system reliability. GA is an efficient method for solving this type of optimization problems. This paper successfully applies the GA technique to obtain the optimal solution of the complex system reliability model under cost constraint in fuzzy environment in which the system cost and component costs might be imprecise. Triangular fuzzy number is used to represent the fuzzy cost coefficients. Static penalty method has been used to handle the cost constraint of the problem. To solve the reliability optimization model, we have developed the GA using MATLAB with tournament selection process, elitism mechanism, arithmetic crossover and uniform mutation operations. Finally, computational results are presented for the reliability of bridge network in crisp and fuzzy environment.
منابع مشابه
Adaptive Network-based Fuzzy Inference System-Genetic Algorithm Models for Prediction Groundwater Quality Indices: a GIS-based Analysis
The prediction of groundwater quality is very important for the management of water resources and environmental activities. The present study has integrated a number of methods such as Geographic Information Systems (GIS) and Artificial Intelligence (AI) methodologies to predict groundwater quality in Kerman plain (including HCO3-, concentrations and Electrical Conductivity (EC) of groundwater)...
متن کاملA New Method for Intrusion Detection Using Genetic Algorithm and Neural network
Abstract— In order to provide complete security in a computer system and to prevent intrusion, intrusion detection systems (IDS) are required to detect if an attacker crosses the firewall, antivirus, and other security devices. Data and options to deal with it. In this paper, we are trying to provide a model for combining types of attacks on public data using combined methods of genetic algorit...
متن کاملForecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)
The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...
متن کاملPrediction of soil cation exchange capacity using support vector regression optimized by genetic algorithm and adaptive network-based fuzzy inference system
Soil cation exchange capacity (CEC) is a parameter that represents soil fertility. Being difficult to measure, pedotransfer functions (PTFs) can be routinely applied for prediction of CEC by soil physicochemical properties that can be easily measured. This study developed the support vector regression (SVR) combined with genetic algorithm (GA) together with the adaptive network-based fuzzy infe...
متن کاملAn integrated environmental management approach to industrial site selection by genetic algorithm and fuzzy analytic hierarchy process in geographical information system
Environmental planning and management can have positive effects on development of some land uses including industrial areas that have a major effect on economic, social and environmental conditions. Considering the most important problems associated with modeling, the fundamental methods and functions of site-selection laid inside the geographical information system are not accounted for the mu...
متن کامل